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Abstract

One of the most remarkable features in sauropod dinosaurs relates to their pneu-

matized skeletons permeated by a bird-like air sac system. Many studies

described the late evolution and diversification of this trait in mid to late Meso-

zoic forms but few focused on the origin of the invasive respiratory diverticula in

sauropodomorphs. Fortunately, it is possible to solve this thanks to the boom of

new species described in the last decade as well as the broad accessibility of new

technologies. Here we analyze the unaysaurid sauropodomorph Macrocollum

itaquii from the Late Triassic (early Norian) of southern Brazil using micro-

computed tomography. We describe the chronologically oldest and phylogeneti-

cally earliest unambiguous evidence of an invasive air sac system in a dinosaur.

Surprisingly, this species presented a unique pattern of pneumatization in non-

sauropod sauropodomorphs, with pneumatic foramina in posterior cervical and

anterior dorsal vertebrae. This suggests that patterns of pneumatization were not

cladistically consistent prior to the arrival of Jurassic eusauropods. Additionally,

we describe the protocamerae tissue, a new type of pneumatic tissue with prop-

erties of both camellae and camerae. This reverts the previous hypothesis which

stated that the skeletal pneumatization first evolved into camarae, and derived

into delicate trabecular arrangements. This tissue is evidence of thin camellate-

like tissue developing into larger chambers. Finally, Macrocollum is an example
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of the gradual evolution of skeletal tissues responding to the fastly specializing

Respiratory System of saurischian dinosaurs.
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1 | INTRODUCTION

Sauropods were an emblematic clade of long-necked
dinosaurs that colonized all continents during the
Jurassic and Cretaceous (Curry Rogers and Forster
2001; Cerda, Paulina Carabajal, et al., 2012; Ghilardi
et al., 2016; Wiersma-Weyand et al., 2021; Rigby
et al., 2021; Díez Díaz, 2022; Mo et al., 2023). Some line-
ages attained giant sizes, evolving into the largest ani-
mals to ever inhabit terrestrial landscapes (Carballido
et al., 2017; Gonz�alez Riga et al., 2016; Lacovara
et al., 2014; Otero et al., 2021). One of the features that
allowed the body enlargement was a structural decrease
of density caused by the presence of a bird-like air sac
system (Perry et al., 2009; Sander et al., 2011). The iden-
tification of Postcranial Skeletal Pneumaticity (PSP) is
the current method to identify the diverticular respira-
tory system in fossil taxa (Britt, 1994). The evaluation
of unambiguous PSP requires the identification of deep
vertebral fossae containing foramina connecting with
internal pneumatic structures such as camerae and
camellae (O'Connor, 2006). Unambiguous PSP has been
extensively reported in neosauropods, especially titano-
sauriforms (Wedel et al., 2000; Wedel, 2003; Schwarz &
Fritsch, 2006; Woodward and Lehman 2009; Cerda, Sal-
gado, & Powell, 2012; Zurriaguz & Powell, 2015;
Bandeira et al., 2016). In contrast, few studies have
focused on the origins of these diverticula within early
sauropodomorphs, and much of the knowledge on non-
sauropod sauropodomorphs is based on scarce evidence
(Butler et al., 2012; Wedel, 2007, 2009; Yates
et al., 2012). Recent evidence showing the absence of
PSP in the earliest dinosaurs (Aureliano et al., 2022)
suggested this trait was not homologous in ornithodir-
ans and that invasive air sacs evolved at least three
times independently, in theropods, sauropodomorphs,
and pterosaurs. This discovery encouraged additional
research into how and when these structures emerged
during the Late Triassic. Here we evaluate the unay-
saurid sauropodomorph Macrocollum itaquii (Müller,
Langer, & Dias-da-Silva, 2018), the oldest and largest
long-necked sauropodomorph of the lower Norian Can-
del�aria Sequence in South Brazil (Müller, Langer, &
Dias-da-Silva, 2018). The micro-computed tomography
of the skeleton of Macrocollum brings novel insights

into the gradual evolution of the Respiratory System in
dinosaurs.

2 | MATERIALS AND METHODS

Institutional abbreviations: CAPPA/UFSM, Centro de
Apoio à Pesquisa Paleontol�ogica da Quarta Colônia, Uni-
versidade Federal de Santa Maria, São João do Polêsine,
Rio Grande do Sul, Brazil; PVL, Paleovertebrate collec-
tion, Instituto “Miguel Lillo,” San Miguel de Tucum�an,
Salta, Argentina; NHM, Natural History Museum,
London, United Kingdom; ULBRA, Centro de Apoio à
Pesquisa Paleontol�ogica da Quarta Colônia, Universidade
Federal de Santa Maria, São João do Polêsine, Rio
Grande do Sul, Brazil (previously Museu de Ciências Nat-
urais, Universidade Luterana do Brasil, Canoas, Brazil).

2.1 | Specimen

The studied specimen corresponds to a paratype of
Macrocollum itaquii (CAPPA/UFSM 0001b), an almost
complete articulated skeleton of an unaysaurid sauropo-
domorph (Müller, Langer, & Dias-da-Silva, 2018). This
specimen was found associated with two other skeletons
(holotype and paratype) resulting in the oldest evidence
of gregarious behavior in dinosaurs. There are yet no his-
tological thin sections to address the skeletochronology
of this specimen, but the scapula and the coracoid are
partially unfused. Some vertebrae present fused neuro-
central sutures to a varied degree along the column, some
neural arches remain not entirely merged, which sug-
gests a subadult ontogenetic stage (Brochu, 1996; Müller
et al., 2015).

2.2 | Locality and horizon

Macrocollum specimens were excavated at the Wachholz
Site (29�36046.4200S; 53�15054.0600W), Agudo municipality,
Rio Grande do Sul state, South Brazil (Müller et al., 2015).
This site is part of the Upper Triassic (lower Norian)
Candel�aria Sequence, Paran�a Basin. Chronocorrelated
strata were dated at 225.42 ± 0.37 Ma (Langer et al., 2018).

2 AURELIANO ET AL.
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2.3 | Taphonomic remarks

The CAPPA/UFSM 0001 series of specimens were moder-
ately affected by taphonomic compression, showing both
subtle diagenetic distortions and cracks (Müller, Garcia,
et al., 2018). However, the external overall morphology is
well preserved, except for smaller foramina, which will
be further explained in the results section.

2.4 | Anatomical nomenclature and
terminology

We apply Wilson's terms to describe vertebral laminae,
fossae, and their landmarks (Wilson, 1999, 2012; Wilson

et al., 2011), Wedel's for vertebral pneumaticity
(Wedel, 2003, 2007; Wedel et al., 2000), and O'Connor's
method to evaluate unambiguous PSP (O'Connor, 2006).

2.5 | Microtomography (μCT scan)

A posterior (eighth) cervical vertebra and an anterior
(second) dorsal vertebra of Macrocollum were scanned
in a Bruker-Skyscan 1,173 microtomographer (130 kV
μ-focus X-ray source; voxel size = 0.15 mm). This μCT
scanner is located at the Instituto do Petr�oleo e dos Recur-
sos Naturais, Universidade Cat�olica do Rio Grande do
Sul/PUCRS), Porto Alegre, Brazil. We used the open-
source software 3D-Slicer v5.2 (Fedorov et al., 2012) and

FIGURE 1 Skeletal reconstruction of the unaysaurid sauropodomorph Macrocollum (CAPPA/UFSM 0001b) showing vertebral elements

along the spine and putative reconstruction of the air sac systems involved. (a) Pneumatic posterior cervical vertebra and a cross-section CT

slice in b. (c) a pneumatized anterior dorsal vertebra with cross-section CT slice in d, and detail of the pneumatic foramen in e. (f) Detail of

the pneumatic foramen in a reconstructed 3D model of the element. (g) Anterior cervical element (apneumatic). (h) Posterior dorsal vertebra

shows no traces of PSP. The sacral series (i), as well as the anterior (k) and mid-caudal (j) series are apneumatic. a, g, h, j, and k are in left

lateral view. c, e and f are in right lateral view. i is in dorsal view. ABD, abdominal diverticula; CER, cervical diverticula; LUN, lung; pf,

pneumatic foramen. The reconstruction was made by Rodrigo T. Müller. Scale bar of the skeletal reconstruction = 500 mm; a–j = 20 mm.
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CloudCompare v2.12.4 (CloudCompare, 2018) to process
the data, to generate 3D reconstructions, and to apply
density-based color grades based on bone tissues
(Aureliano et al., 2020). ImageJ v1.52 (Schneider
et al., 2012) was used for digital measurements. All
microtomography data were uploaded to the Morpho-
bank platform and is available through this link: http://
morphobank.org/permalink/?P4526.

3 | RESULTS

We analyzed the vertebrae of the sauropodomorph
Macrocollum itaquii employing both macroscopic inspec-
tion and computed tomography (Figure 1). The vertebral

tissue showed moderate evidence of diagenetic effects,
mainly in the form of cracking and mineral infills, which
altered the bone morphology slightly. This condition
made it difficult to detect smaller nutritional foramina
but, fortunately, did not affect the preservation of the
larger pneumatic ones. It was thus possible to detect evi-
dence of unambiguous PSP, which varies along the axial
skeleton. Only presacral vertebrae demonstrated the pres-
ence of pneumatic foramina. The μCT scan of the poste-
rior cervical element (Figure 2) revealed that the centrum
comprises mostly dense trabecular bone except for a nar-
row longitudinally-elongated chamber connecting with
two lateral pneumatic foramina. There is also a decrease
in trabecular density in the neural arch. Several fossae
(spof, cpof and cdf) connect with internal pneumatic

FIGURE 2 Micro-CT scan of the posterior (eighth) cervical

vertebra of the unaysaurid sauropodomorph Macrocollum (CAPPA/

UFSM 0001b) in cross-section (a–k) and lateral views (l, m). (a–k)
presents a cross-section series from posterior to anterior-most

positions, respectively. (l) and (m) show a narrow longitudinally-

elongated chamber in the centrum and a decrease in trabecular

density in the prezygapophysis and the neural spine. c, centrum;

ccv, a chamber in the centrum; cdf, centrodiapophyseal fossa; cdl,

centrodiapophyseal lamina; cpof, centropostzygapophyseal fossa;

d, diapophysis; nc, neural canal; ncf, neural canal foramen; pf,

pneumatic foramen; po, postzygapophysis; pocdf,

postzygacentrodiapophyseal fossa; pr, prezygapophysis; prcdf,

prezygacentrodiapophyseal fossa; ptc, protocamera; s, neural spine/

spof, spinopostzygapophyseal fossa. Scale bar = 10 mm.

FIGURE 3 Micro-CT scan of the anterior (second) dorsal

vertebra of the unaysaurid sauropodomorph Macrocollum (CAPPA/

UFSM 0001b). (a) and (b) show cross-sections of the entire vertebra

in anterior view at the approximate midpoint. (e) and (f) show

midshaft slices in lateral view. (f) shows three fossae in the neural

arch (cprf, cdf and cpof). c, centrum; cdf, centrodiapophyseal fossa;

cdl, centrodiapophyseal lamina; ctr, chaotic trabeculae; cpof,

centropostzygapophyseal fossa; cpol, centropostzygapophyseal

lamina; cprf, centroprezygapophyseal fossa; d, diapophysis; dia,

diagenetic artifact; nc, neural canal; ncf, neural canal foramen; pf,

pneumatic foramen; po, postzygapophysis; pocdf,

postzygapophysealcentrodiapophyseal fossa; pr, prezygapophysis;

prcdf, prezygapophysealcentrodiapophyseal fossa; ptc, protocamera;

s, neural spine. Scale bar = 10 mm.
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TABLE 1 Evaluation of postcranial skeletal pneumaticity in sauropodomorphs and the herrerasaurid Gnathovorax. Question marks

indicate unknown information and/or elements.

Taxon/specimen Age
Anterior
cervical

Posterior
cervical

Anterior
dorsal

Posterior
dorsal Sacral

Anterior
caudal Reference

Gnathovorax (CAPPA/
UFSM 0009)

Carnian No No No No No No (Aureliano
et al., 2022)

Buriolestes (CAPPA/UFSM
0035)

Carnian No No No No No No (Aureliano
et al., 2022)

Pampadromaeus
(ULBRAPV016)

Carnian ? ? No ? ? ? (Aureliano
et al., 2022)

Macrocollum (CAPPA/
UFSM 0001b)

early Norian No Yes Yes No No No This work

Plateosaurus (AMNH 6810) late Norian -
Rhaetian

No Yes No No No No Yates et al.
(2012)

Eucnemesaurus (BP/1/6107) late Norian -
Rhaetian

? ? ? Yes ? ? Yates et al.
(2012)

Aardonyx (BP/1/6566) Hettangian No No No Yes Yes No Yates et al.
(2012)

Antenonitrus (BP/1/4952) Sinemurian -
Pliensbachian

? ? No Yes ? No Yates et al.
(2012)

Haplocanthosaurus
(CM879)

Kimmeridgian Yes Yes Yes Yes Yes Yes Wedel (2009)

Saltasaurus (PVL 4017–214,
47, 192)

Maastrichtian Yes Yes Yes Yes Yes Yes (Cerda,
Salgado, &
Powell, 2012);
Zurriaguz
and Powell
(2015)

FIGURE 4 Chronological and phylogenetic evolution of postcranial skeletal pneumaticity in sauropodomorph dinosaurs, and the

herrerasaurid Gnathovorax as an outgroup. 1, Sauropodomorpha. 2, Sauropoda. Based on the topology by Yates et al. (2012) and Müller,

Langer, and Dias-da-Silva (2018). Silhouettes are from Phylopic.org by Bruno Navarro, Mathew Wedel, Ryan Soledade, and Scott Hartman.
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chambers. These chambers are neither camerate nor
camellate, but a new type of tissue with an intermediate
texture. We propose the term “protocamerate chambers”
(ptc) for these structures which are not large enough to be
considered camerae, but also present a camellate array
internally. The μCT scan of the anterior dorsal vertebra
(Figure 3), on the other hand, shows only chaotic apneu-
matic trabeculae in the centrum with no lateral pneumatic
foramina. Only the neural arch is pneumatized, encom-
passing well-defined laminae connecting with the internal
protocamerate tissue (ptc) throughout the fossae (cdf,
pocdf, and prcdf). The protocamerate tissue also expands
ventrodorsally to the interior base of the spinal arch.

4 | DISCUSSION

An evaluation of the herrerasaurid Gnathovorax and the
early sauropodomorphs Buriolestes and Pampadromaeus
found evidence suggesting the absence of PSP in early
saurischians during the Carnian (Aureliano et al., 2022).
We analyzed the unaysaurid Macrocollum from the
early Norian of South Brazil. The presence of well-
developed fossae connected with internal chambers
throughout foramina is the definitive evidence of unam-
biguous PSP (O'Connor, 2006). Consequently, this find
represents the oldest evidence of an invasive air sac sys-
tem in Sauropodomorpha.

Previously, Yates et al. (2012) analyzed the patterns of
pneumatization in Rhaetian and Early Jurassic sauropodo-
morphs, finding PSP to be restricted to the posterior dorsal
elements, as in Eucnemesaurus, Aardonyx, and Antenoni-
trus (Yates et al., 2012). This evidence led the authors to
suggest that the pneumatization process in early forms was
influenced directly and solely by the abdominal air sac sys-
tem, a term defined in previous studies on extant birds
(McLelland, 1989). According to their hypothesis, only in
eusauropods would the cervical air sac system develop with
phyletic consistency, and not sporadically as in non-
gravisaurian taxa. The presence of pneumatic foramina
invading the centrum in a posterior cervical vertebra and
not in an anterior dorsal element inMacrocollum is intrigu-
ing and so far unique in early sauropodomorphs (see
Table 1). The neural arches of Macrocollum also showed
many connections between the interior pneumatic archi-
tecture and the outer fossae (cdf, cprf, cpof; see Figures 2
and 3). Some Plateosaurus specimens were also interpreted
as showing limited and restricted cervical pneumatization
(e.g., AMNH 6810) and were thus considered exceptions in
the evolution of the group (Yates et al., 2012). Pantydraco
could potentially be another exception (Yates et al., 2012)
but the absence of almost the entire sacral and dorsal series
precludes unequivocal determination of PSP features in this
taxon for the time being.

The presence of both cervical and anterior dorsal pneu-
matization in Macrocollum is unique within non-gravisaur-
ians, and could suggest the influence of both cervical and
lung air sac systems invading the vertebral series. However,
the absence of pneumatic foramina in the dorsal centra
might be indicative that lung and abdominal diverticula
were not invading the skeleton. The absence of evidence of
PSP in posterior dorsal elements in chronologically and
phylogenetically earlier forms prior to Eucnemesaurus con-
trasts with the pattern of pneumatization observed in later
forms, specially anchisaurians (see Table 1 and Figure 4).
The evidence of unambiguous PSP in Macrocollum, Panty-
draco, and Plateosaurus, when compared with the apneu-
matic skeleton of Buriolestes, Pampadromaeus,
Thecodontosaurus, Efraasia, and Massospondylus, demon-
strates that the initial evolution of diverticular ventilation
systems did not follow a pronounced pattern (at least at
our current phylogenetic resolution).

Macrocollum also presented a new type of pneumatic
tissue, showing properties of both camarae and camellae
as defined by Wedel et al. (2000). We named this tissue
“protocamerae” (see ptc in Figures 2 and 3). This evi-
dence supports a previous hypothesis from Aureliano
et al. (2022) in which the pneumatic tissues would not
have evolved as camarae in the Jurassic and then camel-
lae in the Cretaceous but actually derived from delicate
camellate-like trabeculae. The structural change from the
apneumatic pseudo-polycamerate tissue in Pampadro-
maeus during the Carnian (Aureliano et al., 2022) to the
protocamerae in Macrocollum demonstrates the possible
developmental trajectory of PSP during the earliest evolu-
tion of sauropodomorph dinosaurs. Additionally, Yates
et al. (2012) observed that the pneumatization through-
out the infradiapophyseal fossae appears later in neosaur-
opods due to the presence of camellate tissue, which
would increase the volume and the rigidity of the neural
arch, allowing the invasion of the diverticula. The inva-
sion of air sacs throughout the cdf, cprf and cpof in
Macrocollum could have been facilitated by the presence
of this protocamerate tissue, with a similar structural
consequence.

5 | CONCLUSIONS

The evidence of unambiguous postcranial pneumaticity
in the unaysaurid Macrocollum itaquii from the early
Norian of Southern Brazil resulted in several insights into
the evolution of the air sac systems. Some of the high-
lights are listed below:

• The chronologically oldest and phylogenetically earli-
est evidence described to date of an invasive air sac
system in a dinosaur.

6 AURELIANO ET AL.
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• The pattern of pneumatization seen in the posterior
cervical and anterior dorsal vertebrae of Macrocollum
is unique in non-sauropod sauropodomorphs. Our data
support previous hypotheses that this clade did not
develop a consistent and extensive pattern of PSP until
the evolution of eusauropods in the Jurassic.

• We described a new type of pneumatic tissue, the pro-
tocamerae, showing properties of both camellate and
camerate tissues found later in the Mesozoic. This
changes the previous hypothesis which stated that the
pneumatization of the skeleton first evolved into
camarae, and only later derived into delicate trabecular
camellae. The protocamerate tissue is evidence of deli-
cate thin tissue forming larger chambers.

Macrocollum is an example of gradual evolution of
both morphology and histology, with the skeletal tissues
adapting to the invasion of the air sac diverticula. We
suggest that the great number of new taxa and specimens
of Late Triassic sauropodomorphs described in the recent
decade should be also sampled since they have the poten-
tial to provide a high-resolution understanding of the
evolution of the Respiratory System in dinosaurs. Finally,
the usage of microtomography coupled with histological
thin sections should be encouraged in future approaches
to achieve this goal.
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constraints on dinosaur rise from South Brazil. Gondwana
Research, 57, 133–140.

McLelland, J. (1989). Anatomy of the lungs and air sacs. Form and
function in birds, 4, 221–279.

Mo, J., Ma, F., Yu, Y., & Xu, X. (2023). A new Titanosauriform sau-
ropod with an unusual tail from the lower cretaceous of north-
eastern China. Cretaceous Research, 144, 105449.
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